LM355 DATASHEET PDF

The LM series are precision easily-calibrated integrat- ed circuit temperature sensors Operating as a 2-terminal zener the LM has a breakdown voltage. lm are available at Mouser Electronics. Mouser offers inventory, pricing, & datasheets for lm Data sheet, LM manual, LM pdf, LM, datenblatt, Electronics LM, alldatasheet, free, datasheet, Datasheets, data sheet, datas sheets, databook.

Author: Samule Dujora
Country: South Sudan
Language: English (Spanish)
Genre: Marketing
Published (Last): 18 September 2007
Pages: 377
PDF File Size: 9.64 Mb
ePub File Size: 18.53 Mb
ISBN: 185-9-81974-851-2
Downloads: 1462
Price: Free* [*Free Regsitration Required]
Uploader: Mikaktilar

Once we obtain this Celsius value, we can convert into Fahrenheit with the following equation: All 3 are calibrated different to output the millivolt voltage reading in proportional to these different units of measurement.

This is so that we can hook our arduino to a computer and send it code that it can run to display to us the temperature.

National Semiconductor

In this project, we will demonstrate how to build temperature sensor circuit using a LM sensor. This translates into the circuit schematic: It is divided by because a span of occupies 5V.

The output pin provides an analog voltage output that is linearly proportional to the fahrenheit temperature. The raw voltage over this value therefore represents the ratio of how much power the output pin is outputting against this full range. Pin 3 is the ground pin and connects to the ground GND terminal of the arduino.

LM35 Temperature Sensor

So to get the degree value in fahrenheit, all that must be done is to take the voltage output and divide it by this give out the value degrees in fahrenheit. So you circuit connections are: Once we have this ratio, we then multiply it by to give the millivolt value.

  IEC 62380 PDF

This is because there is millvolts in 5 volts. As a temperature sensor, the circuit will read the temperature of the surrounding environment and relay this temperature to us back in degrees Kelvin.

This is ideal because the arduino’s power pin gives out 5V of power.

You can adjust this value to meet your personal preference or program needs. The arduino, with suitable code, can then interpret this measured analog voltage and output to us the temperature in degrees Kelvin, Celsius, and Fahrenheit.

We get the ratio of the raw value to the full span of and then multiply it by to get the millivolt value. Pin 2 is the output pin. Temperature Sensor Circuit The temperature sensor circuit we will build is shown below: All we must do is write this code and upload it to the datadheet to convert this kelvin temperature into fahrenheit and celsius. So, for example, if the output pin, pin 2, gives out a value of mV 0.

The IC has just 3 pins, 2 for the power supply and one for the analog output.

How to Build a LM Temperature Sensor Circuit

So if the LM is giving an output reading of 2. We can then easily convert this value into fahrehnheit and celsius by plugging in the appropriate conversion equations. Before we can get a Kevlin reading of the temperature, the analog output voltage must first be read. This output reading of The arduino will then read this measured value from the LM and translate into degrees kelvin, fahrenheit and celsius, which we will be able to read from the computer from the arduino serial monitor.

Since the output pin can give out a maximum of 5 voltsrepresents the full possible range it can give out. Pin 1 is the Adjustable Pin Adj.

  CP SX12000 PDF

This allows us to calibrate the temperature sensor if we want a more precise temperature readout. Pin 2 gives an output of 1 millivolt per 0. This is the datasheet of the LM IC: We attach this pin to analog pin A0 of the arduino board. The code is shown below. We can now write code in the processing software to give instructions to the arduino.

LM Datasheet pdf – Precision Temperature Sensor – National Semiconductor

The difference between an LM and LM34 and LM35 temperature sensors is the LM sensor gives out the temperature in degrees Kelvin, while the LM35 sensor gives out the temperature in degrees Celsius and the LM34 sensor gives out the temperature in degrees Fahrenheit.

Below is the pinout of the LM IC: Now the computer is connected to the arduino. We can use any type of arduino board. All you have to do is take the output reading and divide it by 10 in order to get the temperature output reading. The type B side of the connector goes into the arduino and the type A side into the USB port of the computer. This will be the raw value divided by times We will integrate this with the arduino to measure the temperature.

Once this analog voltage in millivolts is calculated, we then can find the temperature in kelvin by the equation: